ARRAYS

* An Array is defined as, an ordered set of similar data items. All the data items of an
array are stored in consecutive memory locations.
e The data items of an array are of same type and each data items can be accessed using

the same name but different index value.
e Anarray is a set of pairs, <index, value >, such that each index has a value associated

with it It can be called as corresponding or a mapping

Ex: <index, value>

<0,25>
<1,15>
<2,20>
<3,17>
<4,35>

Here, list is the name of array. By using, list [0] to list [4] the data items in list can be

accessed.

Array inC

Declaration: A one dimensional array in C is declared by adding brackets to the name of a

variable.

list[0]=25
list[1]=15
list[2]=20
list[3]=17
list[4]=35

int list[5], *plist[5];

Scanned with CamScanner

e The array list[5], defines 5 integers and in C array start at index 0, so list[0], list[1],
list[2], list[3], list[4] are the names of five array elements which contains an integer
value.

e The array *plist[S], defines an array of 5 pointers to integers. Where, plist[0], plist[1],
plist[2], plist[3], plist[4] are the five array elements which contains a pointer to an

integer.
int list[5] int *plist[5]
list[0] plist[0] 1 -
list[1] plist[1] 1
list[2] plist[2] -
list[3] plist[3] 1+
list[4] plist[4] 4

Implementation:
¢ When the complier encounters an array declaration, list[S],it allocates five consecutive
memory locations. Each memory is enough large to hold a single integer.
¢ The address of first element of an array is called Base Address. Ex: For list[5] the
address of list[0] is called the base address.

e If the memory address of list[i] need to compute by the compiler, then the size of the
int would get by sizeof (int), then memory address of list[i] is as follows:

list[i]=a+i* sizeof (int)
Where, a 1s base address.
list[3] =0+ 3 *sizeof(int) list[0] list[1] 1list[2] list[3] list[4]

=2000+3*4
list{3] =2012

2000 2004 2008 2012 2016

Difference between int *listl; & int list2[5]:
The variables listl and list2 are both pointers to an int, but in list2[S] five memory locations
are reserved for holding integers. list2 is a pointer to list2[0] and list2+i is a pointer to list2[i].

Scanned with CamScanner

Note: In C the offseti do not multiply with the size of the type to get to the appropriate
element of the array. Hence (list2+i) is equal &list2[i] and *(list2+i) is equal to list2[i].

How C treats an arrav when it is parameter to a function?

int *list1 int list2 [5]

G S o

list1

Example: Array Program

#define MAX_SIZE 100

float sum(float [], int);

float input[MAX_SIZE], answer;
void main(void)

{

float sum(float list[], int n)

{

All parameters of a C functions must be declared within the function. As various
parameters are passed to functions, the name of an array can be passed as parameter.
The range of a one-dimensional array is defined only in the main function since new
storage for an array is not allocated within a function.

If the size of a one dimensional array is needed, it must be passed into function as a
argument or accessed as a global variable.

int 1;

for(1=0; i<MAX_SIZE; i++)
mput[i]= 1;

answer = sum(input, MAX_SIZE);
printf(*\n The sum is: %f \n”answer);

int i
float tempsum = 0
for(i=0;i<n; i++)
tempsum = tempsum + list[i]:
return tempsum;

Scanned with CamScanner

When sum is invoked, input=&input[0] is copied into a temporary location and associated
with the formal parameter list

A function that prints out both the address of the ith element of the array and the value found
at that address can written as shown in below program.

void printl (int *ptr, int rows)
{
nt 1;
printf(* Address contents \n”);
for(i=0;1<rows; i++)
printf(*% 8u %5d \n”, ptr+1, *(prt+i));
printf(*\n”);

Output:
Address Content
12244868
12344872
12344876
12344880
12344884

= LN o-= O

Scanned with CamScanner

STRUCTURES

In C, a way to group data that permits the data to vary in type. This mechanism is called the
structure, for short struct.
A structure (a record) is a collection of data items, where each item is identified as to its type
and name.
Syntax: struct
{ data_type member 1;
data_type member 2;

...........................

data_type member n;
} variable_name;

Ex: struct {
char name[10];
int age;
float salary;
} Person;
The above example creates a structure and variable name is Personand that has three fields:
name = a name that is a character array
age = an integer value representing the age of the person
salary = a float value representing the salary of the individual

Assign values to fields
To assign values to the fields, use « (dot) as the structure member operator. This operator is
used to select a particular member of the structure

Ex: strcpy(Person.name, “james™),
Person.age = 10;
Person.salary = 35000;

Type-Defined Structure

The structure definition associated with keyword typedef is called Type-Defined Structure.
Syntax 1: typedef struct

{

data_type member 1:
data_type member 2;

data_type member n;
)} Type_name;

Scanned with CamScanner

Where,
e typedef is the keyword used at the beginning of the definition and by using typedef
user defined data type can be obtained.
e struct is the keyword which tells structure is defined to the complier
The members are declare with their data_type
Type_name is not a variable, it is user defined data_type.

Syntax 2: struct struct_name
{
data_type member 1;
data_type member 2;

data_type member n;

}:
typedef struct struct_name Type_name;

Ex: typedef struct|
char name[10];
int age;
float salary;
JhumanBeing;

In above example, humanBeing is the name of the type and it is a user defined data type.

Declarations of structure variables:

humanBeing personl, person2;
This statement declares the variable personl and person2 are of type humanBeing.

Structure Operation

The various operations can be performed on structures and structure members.

1. Structure Equality Check:
Here, the equality or inequality check of two structure variable of same type or dissimilar type

is not allowed

typedef struct{
char name[10]:
int age;
float salary;
thumanBeing:

humanBeing personl, person2;

if (personl = = person2) is invalid.

Scanned with CamScanner

The valid function is shown below
#define FALSE 0
#define TRUE 1
if (humansEqual(personl,person2))
printf("The two human beings are the same\n");

else
printf("The two human beings are not the same\n");

int humansEqual(humanBeing personl, humanBeing person2)
{ /* return TRUE if personl and person2 are the same human being otherwise

return FALSE */

if (strcmp(personl.name, person2.name))
return FALSE;

if (personl.age != person2.age)
return FALSE;

if (personl.salary !'= person2.salary)
return FALSE;

return TRUE;:

}

Program: Function to check equality of structures

2. Assignment operation on Structure variables:

personl = person2
The above statement means that the value of every field of the structure of person 2 is
assigned as the value of the corresponding field of person 1, but this is invalid statement.

Valid Statements is given below:
strcpy(personl.name, person2.name);
personl.age = person2.age;
personl .salary = person2.salary;

Structure within a structure:

There is possibility to embed a structure within a structure. There are 2 ways to embed

structure.

1. The structures are defined separately and a variable of structure type is declared inside the
definition of another structure. The accessing of the variable of a structure type that are nested
inside another structure in the same way as accessing other member of that structure

Scanned with CamScanner

Example: The following example shows two structures, where both the structure are defined
separately.
typedef struct {
int month;
int day;
int year;
}date;

typedef struct |
char name[10];
int age;
float salary;
date dob:
} humanBeing;
humanBeing personl;

A person born on February 11, 1944, would have the values for the date struct set as:
personl.dob.month = 2;
personl.dob.day = 11;
personl.dob.year = 1944;

2. The complete definition of a structure is placed inside the definition of another structure.
Example:
typedef struct {
char name[10];

int age:
float salary;
struct |
int month;
int day:;
int year;
} date;

} humanBeing;

Scanned with CamScanner

SELF-REFERENTIAL STRUCTURES

A self-referential structure is one in which one or more of its components is a pointer to itself.

Self-referential structures usually require dynamic storage management routines (malloc and
free) to explicitly obtain and release memory.

Consider as an example:
typedef struct {

char data;
struct list *link ;
} list;

Each instance of the structure list will have two components data and link.
« Data: is a single character,
e Link: link is a pointer to a list structure. The value of link is either the address in
memory of an instance of list or the null pointer.

Consider these statements, which create three structures and assign values to their respective
fields:

list iteml1, item2, item3;

item].data = 'a";

item2.data = 'b";

item3.data = 'c’;

item| .link = item2.1link = item3.link = NULL;

a b C

Structures iteml, item2 and item3 each contain the data item a, b, and ¢ respectively, and the
null pointer. These structures can be attached together by replacing the null link field in item

2 with one that points to item 3 and by replacing the null link field initem 1 with one that points
to item 2.

iteml .link = &item2;
item2.link = &item3:

Scanned with CamScanner

Unions:
A union is similar to a structure, it is collection of data similar data type or dissimilar.

Syntax: union{
data_type member 1;
data_type member 2;

data_type member n;
}variable_name;

Example:
union{
int children;
int beard;
} u;
Union Declaration:

A union declaration is similar to a structure, but the fields of a union must share their memory
space. This means that only one field of the union is "active” at any given time.

union{
char name;
int age;
float salary;
Ju;
0 1 2 3 4

wn
-

name

age

v

salary

a

v

The major difference between a union and a structure is that unlike structure members which
are stored in separate memory locations, all the members of union must share the same memory
space. This means that only one field of the union is "active” at any given time.

Scanned with CamScanner

Example:

#include <stdio.h>

union job |
char name|[32];
float salary;
int worker_no;

Ju:

int main()|{
printf("Enter name:\n");
scanf("%s", &u.name);
printf("Enter salary: \n");
scanf("%f", &u.salary);
printf("Displaying\n Name :%s\n",u.name);
printf("Salary: %.1f"u.salary);
return 0;

}

QOutput:

Enter name: Albert

Enter salary: 45678.90

Displaying

Name: f%gupad (Garbage Value)

Salary: 45678.90

Scanned with CamScanner

